欧洲杯足球竞彩
1日版
工程、科学、加工和设计欧洲杯线上买球
安全结帐
使用SSL技术保护个人信息。免费送货
免费的全球航运没有最低订购量。
描述
为任何开发技能、了解材料特欧洲杯足球竞彩性和工程应用选择的人提供的终极材料工程资源。这本书是一个视觉引导的方法,以了解核心材料的属性,以及这些属性如何应用于选择和设计。与Granta Design的市场领先材料选择软件相关联,该软件由劳斯莱斯、GE航空、霍尼韦尔、NASA和洛斯阿拉莫斯国家实验室等机构使用。
主要特征
- 全面介绍工程、制造、加工和产品设计中的材料选择和科学欧洲杯足球竞彩欧洲杯线上买球
- 来自Mike Ashby教授的无与伦比的包,世界领先的材料选择创新者和Granta设计材料选择软件的开发者欧洲杯足球竞彩
- 链接到品牌公司广泛欧洲杯足球竞彩使用的材料选择软件,该软件显示如何根据性能、特性或成本优化产品的材料选择
读者
修读材料工程、材料科学、制造和设计课程以及航空和汽车工程、产品和工业设计相关机械工程课程的本科欧洲杯足球竞彩生。化学工程师和土木工程师选修材料科学和工程技术入门课程。欧洲杯线上买球
这本书也适用于一些研究生级别的课程。这将是一个有用的参考文本,为那些在产品和工业设计的高级课程。
表的内容
第1章简介:材料 - 历史和特色
1.1材料,工艺和选择
1.2材料特性
1.3进一步阅读
1.4习题
第2章家庭树木:组织的材料和工艺
2.1 Introduction and synopsis
2.2 Getting materials organized: the materials tree
2.3 Organizing processes: the process tree
2.4 Computer-aided information management for materials and processes
2.5 Material property charts
2.6 Summary and conclusions
2.7 Further reading
2.8 Exercises
Chapter 3 Strategic thinking: matching material to design
3.1 Introduction and synopsis
3.2 The design process
3.3 Material and process information for design
3.4 The strategy: translation, screening, ranking and documentation
3.5 Examples of translation
3.6 Summary and conclusions
3.7 Further reading
3.8 Exercises
Chapter 4. Stiffness and weight: density and elastic moduli
4.1 Introduction and synopsis
4.2 Density, stress, strain and moduli
4.3 The big picture: material property charts
4.4 The science what determines density and stiffness?
4.5 Manipulating density and stiffness:
4.6 Summary and conclusions
4.7 Further reading
4.8 Exercises
Chapter 5. Flex, sag and wobble: stiffness-limited design.
5.1 Introduction and synopsis
5.2 Standard solutions to elastic problems
5.3 Material indices for elastic design
5.4 Plotting limits and indices on charts
5.5 Case studies
5.6 Summary and conclusions
5.7 Further reading
5.8 Exercises
Chapter 6. Beyond elasticity: plasticity, yielding and ductility
6.1 Introduction and synopsis
6.2 Strength, plastic work and ductility: definition and measurement
6.3 The big picture: charts for yield strength
6.4 Drilling down: strength and ductility
6.5 Manipulating strength
6.6 Summary and conclusions
6.7 Further reading
6.8 Exercises
Chapter 7. Bend and crush: strength-limited design.
7.1 Introduction and synopsis
7.2 Standard solutions for plastic problems
7.3 Material indices for yield-limited design
7.4 Case studies
7.5 Summary and conclusions
7.6 Further reading
7.7 Exercises
Chapter 8. Fracture and fracture toughness.
8.1 Introduction and synopsis
8.2 Strength and toughness
8.3 The mechanics of fracture
8.4 Material property charts for toughness
8.5 Drilling down: the origins of toughness
8.6 Manipulating properties: strength vs. toughness
8.7 Summary and conclusions
8.8 Further reading
8.9 Exercises
Chapter 9. Shake, rattle and roll: cyclic loading, damage and failure
9.1 Introduction and synopsis
9.2 Vibration and resonance: the damping coefficient
9.3 Fatigue
9.4 Charts for endurance limit
9.5 Drilling down: the origins of damping and fatigue
9.6 Manipulating resistance to fatigue
9.7 Summary and conclusions
9.8 Further reading
9.9 Exercises
Chapter 10. Keeping it all together: fracture-limited design.
10.1 Introduction and synopsis
10.2 Standard solutions to crack problems
10.3 Material indices for fracture limited design
10.4 Case studies
10.5 Summary and conclusions
10.6 Further reading
10.7 Exercises
Chapter 11. Rub, slither and seize: friction and wear.
11.1 Introduction and synopsis
11.2 Tribological properties: definition and measurement
11.3 Charting wear rate
11.4 The physics of friction and wear
11.5 Selection and design: materials to manage friction and wear
11.6 Summary and conclusions
11.7 Further reading
11.8 Exercises
Chapter 12. Agitated atoms: materials and heat
12.1 Introduction and synopsis
12.2 Thermal properties, definition and measurement
12.3 The big picture: thermal property charts
12.4 Drilling down: the physics of thermal properties
12.5 Manipulating thermal properties
12.6 Design to exploit thermal proper
12.7 Summary and conclusions
12.8 Further reading
12.9 Exercises
Chapter 13. Running hot: using materials at high temperatures
13.1 Introduction and synopsis
13.2 The temperature-dependence of material properties
13.3 Charts for high temperature design
13.4 The science: diffusion and creep
13.5 Materials to resist creep
13.6 Design to cope with creep
13.7 Summary and conclusions
13.8 Further reading
13.9 Exercises
Chapter 14. Conductors, insulators and dielectrics
14.1 Introduction and synopsis
14.2 Conductors, insulators and dielectrics
14.3 Charts for electrical properties
14.4 Drilling down: the origins and manipulation of electrical properties
14.5 Design
14.6 Summary and conclusions
14.7 Further reading
14.8 Exercises
Chapter 15. Magnetic materials
15.1 Introduction and synopsis
15.2 Magnetic properties: definition and measurement
15.3 The big picture: charts for magnetic properties
15.4 Drilling down: the physics and manipulation of magnetic properties
15.5 Materials selection for magnetic design
15.6 Summary and conclusions
15.7 Further reading
15.8 Exercises
Chapter 16. Materials for optical devices
16.1 Introduction and synopsis
16.2 The interaction of materials and radiation
16.3 Charts for optical properties
16.4 Drilling down: the physics and manipulation of optical properties
16.5 Optical Design
16.6 Summary and conclusions
16.7 Further Reading
16.8 Exercises
Chapter 17. Durability: oxidation, corrosion, degradation
17.1 Introduction and synopsis
17.2 Oxidation, flammability and photo-degradation
17.3 Oxidation mechanisms
17.4 Making materials that resist oxidation
17.5 Corrosion: acids, alkalis, water and organic solvents
17.6 Drilling down: mechanisms of corrosion
17.7 Fighting corrosion
17.8 Summary and conclusions
17.9 Further reading
17.10 Exercises
Chapter 18. Manufacturing processes
18.1 Introduction and synopsis
18.2 Process selection in design
18.3 Process attributes: definition
18.4 Shaping processes: attributes and origins
18.5 Joining processes: attributes and origins
18.6 Surface treatment processes: attributes and origins
18.7 Estimating cost for shaping processes
18.8 Computer-aided process selection
18.9 Case studies
18.10 Summary and conclusions
18.11 Further reading
18.12 Exercises
Chapter 19. Follow the recipe: processing and properties
19.1 Introduction and synopsis
19.2 Microstructure of materials
19.3 Microstructure evolution in processing
19.4 Processing for properties
19.5 Case studies
19.6 Making hybrid materials
19.7 Summary and conclusions
19.8 Further reading
19.9 Exercises
Chapter 20. Materials, processes and the environment
20.1 Introduction and synopsis
20.2 Material consumption and its growth
20.3 The material life cycle and criteria for assessment
20.4 Charts for embodied energy
20.5 Drilling down: embodied energy and recycling
20.6 Design: selecting materials for eco-design
20.7 Summary and conclusions
20.8 Appendix: some useful quantities
20.9 Further reading
20.10 Exercises
细节
- 不。的页面:
- 528
- 语言:
- 英语
- 版权:
- ©巴特沃斯·海因曼2007
- 出版:
- 2007年2月13日
- 印:
- 巴特沃斯·海因曼
- 电子书国际书号:
- 9780080471495
关于作者
迈克尔·阿什比
剑桥大学皇家学会研究荣誉教授,英国伦敦皇家艺术学院前设计访问教授
迈克·阿什比(Mike Ashby)是爱思唯尔几本畅销工程教科书的唯一或主要作者,包括《材料与设计:产品设计中材料选择的艺术与科学》、《机械设计中的材料选择》、《材料与环境》和《材料:工程、科学、加工与设计》欧洲杯足球竞彩。他也是《工程材料1和2》以及《纳米材料、纳米技术和设欧洲杯线上买球计》一书的合著者。
关系和专业知识
剑桥大学皇家学会名誉研究教授,英国伦敦皇家艺术学院前设计访问教授
休Shercliff
休·舍克利夫(Hugh Shercliff)是剑桥大学工程系材料高级讲师。欧洲杯足球竞彩他是《Michael Ashby's Materials, Third E欧洲杯足球竞彩dition》(Butterworth-Heinemann, 2013)的合著者,也是欧洲铝协会赞助的工程师和研究人员电子学习网站aluMATTER的撰稿人。
关系和专业知识
英国剑桥大学工程系材料高级讲师欧洲杯足球竞彩
大卫Cebon
英国剑桥大学机械工程教授
关系和专业知识
剑桥大学工程系,英国