电动汽车满足了许多不同的需求。电动汽车are, before anything else, a mode of transportation, a green-friendly way to get from point A to point B. They arere a win for the environment as they boast no emissions. They are also a significant step toward eliminating a global fleet dependent on fossil fuels.
Image Credit: Amphenol Advanced Sensors
电动汽车带来了一个奖励卖点,其前辈带有内燃机(ICE)没有:主要便携式电源。这不仅意味着使用EV作为充电手机的来源。
电动汽车take energy stored within their batteries wherever they go thanks to advances in battery technology and storage capacity.
The stored energy is enough to power a house for a few days and can be used as a type of mobile power generation unit, capable of bringing electricity along without the noise and complication of gasoline generators.
Electric car battery packs use sophisticated sensor control and energy management systems as a mobile power bank to draw power from the local power grid. They are also able to push energy back to the grid, as well as being able to provide A/C plug power directly from its battery and inverter.
电动汽车与适当的传感器技术配对时,为遥远,安全和高效的偏远和紧急电源打开了新的门。
来自电动汽车电池组的能量有所不同的四个应用
电动电池provide clean and quiet electricity at a moment’s notice wherever they are, and, in many cases, without requiring special tools or training, something that combustion engine vehicle engines cannot do.
电动电池将电力带到缺乏功能电源的地方,就像发电机一样。电动电动电池组可以在许多应用中起作用,包括:
-
Power outages:平均大小(例如轿车)车辆中充满电的电动汽车在其电池内具有60-100千瓦时的电源。在停电期间,这种储存的能源等于普通家庭的1-3天能量。
-
紧急行动:电动汽车从偏远地区的救援行动到主要灾难场所为紧急响应者提供宝贵的权力。
-
建造:电动汽车和卡车提供了另一种充电或运行工具的手段,较大的电力汽车包括一个电力库,可为重型设备提供能源。2020欧洲杯下注官网这意味着不必担心电动工具用尽电源。
-
闲暇:大型露营车中的电动电池电量可以支持RV“ boondocking”,而不会发电机的噪音和气味。这意味着下车并不一定意味着变黑。
通过传感器技术优化电动汽车电力传输
An EV needs to be monitored when providing power, just as it does when receiving power.
不管电动汽车电池组中的能量流动方向如何,第一问题是响应式热管理。电动汽车传感器可在电动汽车充当电源,提供有关系统中电流的信息,电压和临界温度时保持峰值电池性能。
EV transformers, inverters and batteries operate optimally within a temperature range of 15-45 °C. The battery can lose efficiency when outside of that range.
Overheating is the primary concern with electric vehicle battery thermal management, no matter if the battery is providing power or receiving it. EV batteries and inverters give off heat when providing power the same as they do when charging and powering the vehicle, especially when converting electricity from one form to another, such as A/C to D/C.
如果细胞中的温度升高超过70°C,则可能发生内部降解;这会释放易燃气体,并可能开始热失控。
一旦启动,热失控就会扩散,并且很难停止。
传感器技术积极地使电池组热管理系统在整个功率传输过程中参与。
传感器监视包装冷却系统的其他元素以进行性能,并可以在早期阶段提醒用户电解质或冷却液泄漏,水入侵或其他故障,否则可能会引起人们的注意。
更高级的传感器可以实现对热管理系统的增强实时监控,甚至可以将短信发送给车主,如果某事开始出现问题。
However, preventing temperature spikes is only part of thermal management for EV batteries used as a mobile power source.电动电池需要在较冷的环境中至少提高至少15℃以适当起作用。
电动汽车传感器可以激活内部加热元件,以使系统达到最低温度以进行操作,就像打开EV电池组的冷却系统一样。
EV能量:运动中的多功能性
电动汽车代表运输和技术的结合,并在移动性中打破了新的地面,并带来了以前不可能使用冰车的功能。
电动汽车将多功能性提高到一个新的水平,不仅仅是在目的地之间移动事物和人的一种手段。EV及其电池组的附加功能(例如提供移动电源解决方案)是安全且可靠的传感器技术。
该信息已从Amphenol Advanced Sensor提供的材料中采购,审查和调整。欧洲杯足球竞彩
For more information on this source, please visitAmphenol高级传感器。