Editorial Feature

石墨烯电池是如何制造的?

石墨烯电池具有与常规电池相似的框架,由电解质溶液和两个电极组成,以实现离子和电荷传输。基于石墨烯的电池和固态电池之间的主要区别在于两种电极的组成。尽管阴极通常发生变化,但碳同素也可以用于制造阳极。

graphene batteries, how are graphene batteries made, how to make graphene batteries

图片来源:pabloua/shutterstock.com

石墨烯是类似于石墨,钻石和煤炭的碳同素同质量。由于其几何形状,它具有二维(2D)结构和六角形图案。这使其具有结构性灵活性以及其他几种理想的电气和机械质量。

石墨烯电池的制造

电池中的石墨烯主要用作柔性电极。目前有四种用于生产石墨烯的关键生产方法:石墨氧化物的去角质,改良的鹰嘴豆的方法,外延生长和化学蒸气沉积。

悍马的​​方法和去角质石墨氧化物

The Hummers' method is commonly used to produce graphene. In this process, KMnO4and NaNO3溶解在浓缩的H中2所以4对于有效的氧化,导致石墨烯层被石墨氧化物刮掉。有很多方法可以根据应用程序要求修改悍马的方法。

When produced for the first time, graphene sheets were prepared via mechanical exfoliation using scotch tape. In a more economical modification of this method, a three-roll mill system is used to continuously exfoliate graphite. This is followed by placing an adhesive in between the center of the rolls and the feed, with the graphite dispersed on the adhesive. Post exfoliation, burning away the resin layers in a muffle furnace at 500 °C generates pure graphene.

化学气相沉积

Chemical vapor deposition (CVD) constitutes heating carbon to vapor and/or decreasing the atmospheric pressure to coat a substrate. Metal is used as a substrate to act as a catalyst in graphene growth. The process comprises three key phases: (i) carbon diffusion in the metal film, (ii) cooling the thin metal film to strip the carbon out of it because of the decrease in solubility, and (iii) the surface generation of graphene layers. Another method, called plasma-enhanced chemical vapor deposition (PECVD), has advantages compared to CVD, such as direct growth on nanostructures or a plastic substrate.

外延生长

石墨烯膜的大规模生产可以使用外延生长作为微分化方法产生。外延由于其碳含量和柔韧性而使用SIC作为绝缘体底物,因此在去除或熔化硅后可以保留碳(石墨烯)。但是,除了由底物粘结影响的制造石墨烯层的电子特性外,仍然很难在较大的区域获得均匀的厚度。可以通过使用不同的基板来消除这些缺点。

石墨烯和商业电池之间的结构差异

常规电池通常用锂和锌作为电极材料。欧洲杯足球竞彩但是,由于电荷密度较高,它们的寿命较短。阳极通常使用锂铜氧化物(licoo)制成2)或磷酸锂(Lifepo4)在较新的电池中。

另一方面,石墨烯是六角形结构化的蜂窝晶状体排列中的2D碳原子板。该结构是碳原子的SP2杂交产生三角平面几何形状的结果。本文中,单个碳原子与另外三个相关。这种2D结构及其六角形图案和几何形状为石墨烯提供了结构灵活性。

图片来源:dorxela/shutterstock.com

Graphene batteries also weigh less and are slimmer than concurrent lithium-ion batteries (LiBs). Additionally, the use of graphene enables higher charge capacities. While lithium ions can store up to 180 Wh/kg of energy, graphene stores up to 1000 Wh/kg of energy.

与传统的LIB不同,石墨烯电池耐用,轻巧,适合于存储高容量的能量以及减少的充电时间。通过将石墨烯纳入电池阳极以获得更高的性能和形态优化,也可以通过将石墨烯掺入电池烯(以及其他可充电电池类型)进行改进。

石墨烯电池的未来范围

As LiBs near their maximum theoretical efficiency, graphene-based batteries could become a trend in the future for portable electronic battery industries. With the implementation of graphene batteries, the drawbacks of LiBs that impede the expansion of several industries may be eliminated. Moreover, the minimal technological and environmental limitations of graphene batteries also exhibit potential for industrial sustainability.

由于充电能力增加和稳定的温度,石墨烯电池可以使电动汽车进一步成为商业上的可行性。此外,石墨烯电池还可能在生物医学植入物或植入医疗设备(IMDS)中应用。在最近的一项研究中,开发了一种全石膏 - 由于阴极和阳极均显示出更快的表面反应,并伴随着提高的电导率和多孔形态,因此表现出显着的高功率密度。

由于这一发现相对较新,因此正在进行研究以找到石墨烯商业生产的方法。三星开发了“石墨烯球”电池,相关的生产过程表明该技术的潜在商业应用。但是,石墨烯的特性尚未完全理解。目前,研究证明,石墨烯电池的利用可以为当今的LIB提供环境友好和经济的可持续性解决方案。

More from AZoM: Researchers Collaborate on Ocean-Degradable Bioplastics

References and Further Reading

Motke,K.,Mayanaikar,R。,石墨烯电池 - 储能解决方案,IJARIIE-ISSN(O)-2395-4396,第6卷第2期,2020年,https://ijariie.com/

Coffelt,J.,Harnishfeger,J.,Lin,K。,(2019年)。石墨烯电池和储能的未来[在线]匹兹堡大学,斯旺森工程学院。可用网址:https://www.engineering.pitt.edu/contentassets/5a0c516991454a7482a98cd7a7ad5ada/overall/a4_ece_best-paper_graphene-batteries_-best-paper-.pdf

Haegyeom Kim, H., Park, K., Hong, J., Kang, K., All-graphene-battery: bridging the gap between supercapacitors and lithium ion batteries,Scientific Reports, 2014, DOI:10.1038/srep05278

Kai Liang Tan,R.,et al.,石墨烯作为灵活的电极:制造方法的审查,J. Mater。化学A,2017,5,17777,doi:10.1039/c7TA05759H

Girish K., Karthik Raj H. P., Manoj M., Graphene Batteries over Lithium Ion Batteries,国际科学,工程和技术杂志欧洲杯线上买球,2019年,https://www.ijset.in/wp-content/uploads/nccip55.pdf

免责声明:此处表达的观点是以其私人身份表达的作者的观点,不一定代表AZOM.com的观点有限的T/A Azonetwork本网站的所有者和运营商。此免责声明构成了条款和条件使用此网站。

Chinmay Chari

Written by

Chinmay Chari

Chinmay Chariis a technical writer based in Goa, India. His academic background is in Earth Sciences and he holds a Master's degree in Applied Geology from Goa University. His academic research involved the petrological studies of Mesoarchean komatiites in the Banasandra Greenstone belt in Karnataka, India. He has also had exposure to geological fieldwork in Dharwad, Vadodara, in India, as well as the coastal and western ghat regions of Goa, India. As part of an internship, he has been trained in geological mapping and assessment of the Cudnem mine, mapping of a virgin area for mineral exploration, as well understanding the beneficiation and shipping processes of iron ore.

引用

请使用以下格式之一在您的论文,论文或报告中引用本文:

  • APA

    Chari,Chinmay。(2022年10月29日)。石墨烯电池如何制造?azom。于2023年2月4日从//www.wireless-io.com/article.aspx?articleId=22120检索。

  • MLA

    Chari,Chinmay。“石墨烯电池是如何制造的?”。azom。2023年2月4日。

  • 芝加哥

    Chari,Chinmay。“石墨烯电池是如何制造的?”。azom。//www.wireless-io.com/article.aspx?articleId=22120。(2023年2月4日访问)。

  • Harvard

    Chari,Chinmay。2022。石墨烯电池是如何制造的?。azom, viewed 04 February 2023, //www.wireless-io.com/article.aspx?ArticleID=22120.

告诉我们你的想法

您是否有评论,更新或您想添加到本文中的任何内容?

留下您的反馈
Your comment type
提交