汽车座椅的设计吸引了车辆制造商的关注。他们认识到,座椅样式,舒适性和安全性有助于车辆的初始吸引力并确保客户满意度,而座位的耐用性可以反映在车辆的剩余价值中。 ICI聚氨酯在柔性聚氨酯泡沫技术中取得的最新进展导致了新的,低密度,高性能聚氨酯(PU)系统的制定,用于汽车座椅。除了该开发计划外,该公司还扩展了对PU泡沫生产中使用的基本材料的关键化学成分如何影响座椅的最终性能。欧洲杯足球竞彩这可以准确预测座椅泡沫性能以及长期和短期的舒适性和耐用性,随着时间的流逝,以及在一系列气候条件下,对于常规和毫无疑问的稀薄的死锅座。 汽车座椅的功能汽车座椅的功能是在静态和动态条件下舒适地支撑身体。为了实现这一目标,传统的座椅设计结合了座椅底座中的许多单独的机械悬架系统。这些系统用于座椅背部和其他装饰零件的学位,但是由于载荷的载荷明显较低,因此它们的复杂性较低。 常规座椅设计The conventional seat base uses a steel (or other metal) frame that acts as a chassis to support a series of springs and a PU foam layer or ‘topper pad’, which sits on top of the springs. To produce such a seat, expensive and time consuming multi-stage fabrication techniques have to be used. 座椅演变近年来,车辆制造商和第一层供应商一直致力于降低生产成本,并启动了计划以减轻座椅的重量,同时提高了其骑行舒适性和耐用性。为了补充这些程序,ICI聚氨酯发起了自己的研究,旨在减少生产中使用的泡沫密度和缓冲厚度,并增加对影响长期和短期座位舒适的因素的理解。 聚氨酯发育1989年,蒙特利尔协议的实施禁止使用CFC11作为辅助吹剂,该剂用于提高加工性和降低泡沫密度。然后有必要将泡沫密度提高到55-6o kg.m-3to meet vehicle manufacturers' seating specifications. ICI Polyurethanes has now developed special PU systems with enhanced performance characteristics, which meet or exceed the demands of vehicle manufacturers at significantly reduced foam thicknesses, at densities of around 40 kg m-3. 设计开发To increase design speed and further enhance comfort, the company has also developed computer modelling techniques that can simulate both the static and dynamic response of the seat. From the results it is possible to select the precise blend of base materials to produce a foam that is suited to the unique characteristics of a vehicle. This offers significant advantages to seat manufacturers, as they can speed up development from design and low cost laboratory testing to full in car testing. 完整的泡沫座椅尽管有这些进展,但传统的座椅设计仍然相对昂贵,并且对优化舒适性和耐用性的优化限制。另一方面,“完整的泡沫”座椅技术为车辆制造商提供了充分利用PU技术进步的机会。ICI聚氨酯在“概念座椅”的开发中使用了这种技术。 该设计
在完整的泡沫座椅中,金属框架或底盘被摇篮或锅代替,摇篮或锅通常是用撞击装饰的玻璃填充尼龙,ABS或轻质金属制成的。弹簧和顶垫都被单个PU泡沫芯所取代。 As the foam core now has to provide both vibration dampening and comfort, it has to be considerably thicker than a foam used in a conventional seat. To give an equivalent performance, the first generation of full foam seats generally needed a foam core thickness of approximately 13 cm. However, to achieve maximum design freedom and reduce the cost impact of the increased material usage, volumes need to be significantly reduced. The Target概念座椅的目标是将泡沫核心厚度降低46%,至7厘米。为此,ICI一直在研究这种减少对两个关键因素的影响,即泡沫耐用性和长期乘员舒适性。这种需要从用于改善常规座椅PU泡沫的技术中开发出的特殊测试方法。 Dynamic Creep动态蠕变测试允许在驾驶条件下确定泡沫的物理变化。乘员长期振动产生的能量导致泡沫失去高度和硬度。在某些条件下,这种变形会导致泡沫结构永久损害。 测试表明,随着时间的推移,将弹性模量变化和蠕变速率最小化,并且一系列气候条件可以改善舒适度,减轻疲劳并可以减少泡沫厚度。这些发现已经得到了许多全球座椅制造商的证实,他们已经使用真实人员进行了主观实验室测试。 球反弹测试Ball rebound testing has become an automotive industry standard in Japan for evaluating and specifying seating comfort. The test is designed for analysis over a short time period and only provides an indication of static comfort or ‘showroom feel’. To give a true representation of sustained ride comfort, analysis of dynamic performance is required. 传统的球反弹理论指出,要保持舒适度,较薄的座椅需要更高的球反弹(泡沫“弹性”)值。然而,ICI的最新研究考虑了座位泡沫的时间依赖性行为,并表明表现出相对较低的反弹性能的座椅即使在不同的气候条件下,也可以带来很高的舒适度。 设计结论The company’s latest range of seating technologies has been designed to achieve optimal comfort at minimal densities, both initially and over time, under the most stringent conditions of varying temperature and humidity. They demonstrate that the net reduction in weight brought about b reducing the seat thickness outweighs an increase in density necessary to control foam performance, therefore offering seat manufacturer the potential for significant cost savings. As these mathematical models and testing procedures are further developed, refined and combined with the advances in PU formulation technology, so the concept seat strategy will allow further improvements in comfort at ever low foam volumes and seat thickness. 概括概念座椅策略结合了对汽车制造商至关重要的汽车设计的许多方面。它包含降低生产成本的持续需求,提高车辆耐用性的需求以及满足日益复杂客户的需求的需求。 但是,概念席位并不是围绕着可以降低的生产成本和速度降低的概念。它包含对回收和减少制造过程的环境影响的广泛关注。 概念座位增加了组件集成的机会,从而降低了组件成本,减少了组装时间并提高了回收操作的效率。减少的泡沫量将减少基本材料的消耗并提高生产运营的能源效率。欧洲杯足球竞彩尽管如此,基础研究尽管已经产生了极为有价值的信息,这些信息才刚刚开始得到收益。 |