亚微米半导体测量与多光谱干涉法

现代半导体制造技术已迅速发展。因此,使用非接触式位移和透明涂层厚度的测量变得非常关键。应用程序抗性涂料厚度监测,纳米水平晶圆定位和高精度晶片谱分析需要现代的高精度测量仪器,这些仪器十年前不可用。

previoulsy这些测量是使用纤维干涉法进行的。增量测量中有几种固有的局限性,即使不是不可能,就难以准确的测量。但是,随着多光谱干涉法的进步,现在被认为是坚硬或不可能的应用程序可以很容易地解决。

常规的纤维干涉仪

常规干涉仪的基本局限性是它们无法确定要测量目标的确切位置。常规纤维干涉仪的示意图如图1所示

Figure 1.传统的纤维干涉仪

单个波长光源集中在目标上,并反射形成叠加波形,该波形被监测以测量位移。目标位置的任何变化都会导致叠加波形的变化,而与移动方向无关。这种位移测量方法是不准确的,因为可以确定位置,但方向尚不清楚。

In actual fact, this is not very significant since typically the setup will be able to determine the direction of movement. However, accurate determination of the target position is only possible when the start position is known and there has been no interruption in the measurement since the target left this known position. In case both these conditions are not fulfilled, accurate positioning of the measured target is not possible using a traditional interferometer.

多光谱纤维干涉仪

图4。Keyence multispectral fiber interferometer

常规干涉仪的另一个主要缺点是使用单个波长激光源。干涉仪技术已经相当先进,从而可以使用超级发光二极管(SLD)光源,该光源提供了增强的功能。

Super Luminescent Diode Features

Conventionally, a single wavelength laser is commonly used as the light source. Using this technique, determination of the target displacement is limited to using the results of a single superposition waveform. A SLD can generate a light source with different wavelengths across a narrow band. Accordingly, it is not required to be restricted to the superposition waveform of a single wavelength of light but the entire band of the light source is used to generate multiple superposition waveforms.

The Advantage of Having Multiple Superposition Waveforms

基本上,每个波形可以在类似于传统干涉仪的技术中独立使用。但是,通过使用多个波形,运动方向不仅以类似于常规干涉仪的方式跟踪,而且绝对位置也取决于叠加波形的相对幅度。

Applications

多光谱干涉仪find applications in the following fields:

  • Wafer Thickness Measurement
  • 晶圆经经测量

Wafer Thickness Measurement

常规干涉测量技术将无法对位于两个纤维干涉仪之间的硅晶片进行直接厚度检查。这主要是因为在测量过程中没有发生任何位移。可以测量厚度和晶圆均匀性的变化,但不能测量实际厚度。

电容传感器要求应接地晶片,并将大的测量头放置在非常靠近晶圆表面的情况下。因此,使用电容传感器也不是非常可行的。

A多光谱干涉仪可以确定检查中涉及的每个传感器头的绝对位置。将获得的数据与直接生成的绝对厚度数据进行了比较,从而显着减少了时间。此外,将多光谱干涉仪安装在一个显着的对峙中,以确保在异常零件转换期间与测量装置造成的偶然晶圆损伤的额外保护层。

晶圆经经测量

传统的干涉仪无法通过将多个测量仪器定位在晶圆表面的各​​个点上,直接测量翘曲。必须移动目标或传感器以测量可能造成不必要的损坏并增加机智时间和设置成本的扭曲。

These restrictions are overcome by a多光谱干涉仪and simultaneous absolute measurements on multiple points of a target surface are possible without translating the sensors.

Conclusions

多光谱干涉法overcomes most of the restrictions met by conventional interferometers in semiconductor manufacturing applications. The absolute nature of multispectral interferometry enables precise nanometer level measurements without a relative reference or a home position. This ability is critical in applications in high precision manufacturing where relative displacements cannot be used and providing a known reference is near to impossible.

About KEYENCE

随着工厂自动化的快速发展,并加强了对检查和研发工具的关注,钥匙, as the leading supplier of sensors, measurement devices and microscopes, is developing and manufacturing innovative and reliable products that meet customer requirements in every manufacturing industry.

此信息已从Keyence提供的材料中采购,审查和调整。欧洲杯足球竞彩

有关此消息来源的更多信息,请访问钥匙

引用

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    钥匙。(2019, July 02). Sub-Micron Semiconductor Measurement with Multispectral Interferometry. AZoM. Retrieved on September 27, 2022 from //www.wireless-io.com/article.aspx?ArticleID=5707.

  • MLA

    钥匙。“使用多光谱干涉法的亚微米半导体测量”。azom。27 September 2022. .

  • 芝加哥

    钥匙。“使用多光谱干涉法的亚微米半导体测量”。azom。//www.wireless-io.com/article.aspx?ArticleID=5707. (accessed September 27, 2022).

  • Harvard

    钥匙。2019.亚微米半导体测量与多光谱干涉法。Azom,2022年9月27日,https://www.wireless-io.com/article.aspx?articleId=5707。

Tell Us What You Think

您是否有评论,更新或您想添加到本文中的任何内容?

Leave your feedback
Your comment type
Submit