Mar 29 2018
即使是微量的氧气也可以将添加到燃料电池中添加的分子催化剂。因此,这个问题阻碍了基于大量金属的这种催化剂的使用。在与技术相关的应用中模仿自然生物催化剂的活跃中心。
Recently, researchers from theRuhr-UniversitätBochum(RUB), theMax-Planck-Institute for Energy Conversionin Mülheim and the from the太平洋西北国家实验室在美国华盛顿,已经能够为这种催化剂配备针对分子氧的自卫机制。他们的发现可以在2月28日的《自然通讯》中找到。
An Alternative for Scarce and Noble Catalyst
据说氢是将来最有利的能量向量之一。通常,在非常有效的H中使用基于高贵和稀缺材料(如白金)的催化剂欧洲杯足球竞彩2/O2driven fuel cells. A promising alternative for this costly and limiting catalyst materials are molecular catalysts based on plentiful metals like iron and/or nickel, which resemble a mimic of the active center of nature’s extremely active hydrogenases.
氧损伤
这种分子催化剂的一类显着的是Dubois型复合物。它们的活跃中心由一个主要的镍原子组成,该原子由吊弓协调。这些催化剂揭示了与氢化酶相似的高活性,可以更改其配体结构以在水性系统中催化并允许在电极表面共价附着。“
The latter is of particular importance for technological applications since the immobilization enhances the performance of such fuel cell system正如鲁尔(Rub)分析化学的沃尔夫冈·舒曼(Wolfgang Schuhmann)教授所解释的那样,卓越的鲁尔(Ruhr)群体成员探索了溶剂化(Resolv)。
这种催化剂的缺点是它们对氧气的敏感性很高,这阻碍了该材料在目前可用的燃料电池系统中的技术应用中的使用。但是,类似于可以通过将生物催化剂整合到氧气还原聚合物基质中保护的氢化酶,该团队也能够将该保护系统转换为dubois-catalyst。
A Polymer Induces Self-Protection
For the protection against oxygen, the research team added a hydrophobic and redox-inactive polymer as immobilization matrix for the nickel-complex based catalyst. The embedment of the catalyst into the polymer matrix guarantees the creation of two separated reaction layers: a catalytically active layer near the electrode surface and a protection layer at the polymer/electrolyte interface. The first layer allows for an effective conversion of hydrogen at the electrode surface and the second layer eliminates incoming oxygen at the interface and thereby protects the active layer from oxygen damage.
电断开层
根据沃尔夫冈·舒曼(Wolfgang Schuhmann)的说法,“the catalyst itself provides the protection against oxygen. For this, the catalyst uses electrons from the hydrogen oxidation in the outer polymer layer which are then used to reduce oxygen at the catalyst centers.”
这可能是可以想象的,因为发达的聚合物基质将来自电极表面的外聚合物层中的镍催化剂脱离。因此,可以利用从外层的氢氧化中提取的所有电子来减少聚合物/电解质界面处的破坏性氧。
同时,聚合物防止电子从电极表面的活性氢氧化层转移到保护层。因此,活性层的所有电子都移至电极,并且不用于保护。
The polymer/catalyst altered electrodes displayed an outstanding long-term stability and extraordinary current densities which are both requirements for robust fuel cells. The proposed hydrogen oxidation electrodes are hence a favorable alternative for the development of sustainable and economical energy conversion systems.