Synthesis of One-Dimensional Van der Waals Heterostructures may Lead to Miniaturized Electronics

The recent synthesis of one-dimensional van der Waals heterostructures, a type of heterostructure made by layering two-dimensional materials that are one atom thick, may lead to new, miniaturized electronics that are currently not possible, according to a team of Penn State and University of Tokyo researchers.

工程师通常会产生异质结构,以实现单个材料中不可用的新设备属性。Van der Waals异质结构是由2D材料制成的,它们直接堆叠在彼此的顶部,例如Lego-Blo欧洲杯足球竞彩cks或三明治。

范德华力是未充电分子或原子之间的吸引力,将材料固定在一起。欧洲杯足球竞彩

根据宾夕法尼亚州立大学工程科学与力学教授斯拉瓦·罗特金(Slava V. Rotkin)的说法,研究人员生产的一维范德华异质结构与迄今为止工程师生产的欧洲杯线上买球范德华异质结构不同。

“看起来像一堆二层材料,在完美的圆柱体中卷起,”欧洲杯足球竞彩罗特金说。“换句话说,如果您卷起三明治,则将所有好东西保留在应该的位置而不动,但是在这种情况下,您还将其变成薄的圆柱体,非常紧凑,例如热狗或一个长长的寿司卷。这样,第二材料仍然以所需的垂直异质结构序列相互接触,而人们不欧洲杯足球竞彩必担心它们的横向边缘,所有这些都卷起,这对于制作超级小型设备来说是一件大事。”

该团队的研究发表在ACS纳米,表明所有2D材料都可以滚动到这些一维异质结构欧洲杯足球竞彩圆柱体中,称为异纳米管。东京大学的研究人员最近在异纳米管上制造了电极,并证明它可以作为非常小的二极管运行,尽管大小尺寸。

"二极管是光电子中使用的主要设备 - 它们是光电探测器,太阳能电池,发光设备等的核心,”罗特金说。“在电子设备中,二极管用于几个专用电路;尽管电子的主要要素是晶体管,但两个背对背连接的二极管也可以用作开关。”

This opens a potential new class of materials for miniaturized electronics.

"It brings device technology of 2D materials to a new level, potentially enabling a new generation of both electronic and optoelectronic devices,"罗特金说。

罗特金(Rotkin)对该项目的贡献是解决一项特别具有挑战性的任务,这确保了他们能够使一维范德华(Van der Waals)异质缸具有所有必需的材料层。

"Using the sandwich analogy again, we needed to know whether we had a shell of 'roast beef' along the entire length of a cylindrical sandwich or if there were regions where we have only 'bread' and 'lettuce' shells,"罗特金说。“缺少中间绝缘层将意味着我们在设备合成中失败了。我的方法确实明确显示了中间的壳体沿整个设备的整个长度。”

In regular, flat van der Waals heterostructures, confirming existence or absence of some layers can be done easily because they are flat and have a large area. This means a researcher can use various type microscopies to collect a lot of signal from the large, flat areas, so they are easily visible.

当研究人员将它们卷起时,就像一维范德华异质结构一样,它变成了一个非常薄的线状圆柱体,很难表征,因为它发出很少的信号并实际上变得看不见。此外,为了证明在二极管的半导体 - 绝缘子 - 轴导剂连接中存在绝缘层,不仅需要解决异质 - 纳米管的外壳,而且还需要解决中间的外壳,而中间是完全被外部遮蔽的。硫化钼半导体的壳。

To solve this, Rotkin used a scattering Scanning Near-field Optical Microscope that is part of the Material Research Institute's 2D Crystal Consortium, which can "see" the objects of nanoscale size and determine their materials optical properties. He also developed a special method of analysis of the data known as hyperspectral optical imaging with nanometer resolution, which can distinguish different materials and, thus, test the structure of the one-dimensional diode along its entire length.

根据Rotkin的说法,这是六角硼(HBN)壳作为异纳米管的一部分的光学分辨率的首次演示。过去研究了相似的显微镜,研究了许多纯HBN纳米管,这些纳米管由许多没有其他类型的材料组成。

"However, imaging of those materials is quite different from what I have done before,"罗特金说。"有益的结果是表明了我们从物体测量光谱的能力,该物体是一条仅厚的电线的内壳,这是一条线的内壳。这与能够看到木木和能够通过铅笔墙内识别铅笔内的石墨棒之间的区别。”

Rotkin plans to expand his research to extend hyperspectral imaging to better resolve other materials, such as glass, various 2D materials, and protein tubules and viruses.

“这是一种新颖的技术,将导致未来的发现发生,”罗特金说。

Along with Rotkin, other authors of the paper include Ya Feng, Henan Li, Taiki Inoue, Shohei Chiashi, Rong Xiang and Shigeo Maruyama, from the University of Tokyo.

该研究由宾夕法尼亚州立大学国家科学基金会材料研究科学与工程中心以及日本教育,文化,体育,科学和技术部的纳米级科学中心部分欧洲杯线上买球资助。欧洲杯足球竞彩

资源:https://www.psu.edu/

告诉我们你的想法

您是否有评论,更新或想添加到此新闻故事中的任何内容?

Leave your feedback
提交