Thermodynamics of Stacked Graphene Influenced by Pair-Graphene Structures

In a recent study published in the journal科学报告,,,,researchers from Japan studied the thermodynamic properties of graphene stacked on LiNbO3通过应用表面声波(SAW)施加晶体。

Study:可能的成对 - 石碳结构控制任意堆叠的几层石墨烯的热力学特性。图片来源:New-Light-Visuals/Shutterstock.com

石墨烯’s Defects and Thermodynamics

石墨烯是一种有前途的2D材料,用于电子设备和工业应用。石墨烯层必须在催化剂底物(镍或铜箔)上生长,然后将石墨烯层转移到基材上以制造电子设备。晶体缺陷,例如一维脱位晶界,点缺陷和在转移过程中石墨烯中发生的皱纹。

Defects can develop during growth due to crystal defects in the catalyst substrate and substantial temperature fluctuations in the catalyst substrate. Defects generated during the transfer process (ripples) occur at room temperature due to deformation of the graphene layer and stress injection.

由于这些原因,尚未开发出完美或无缺陷的石墨烯层。因此,了解缺陷对石墨烯层热膨胀系数(TEC)的影响至关重要。

(A)单,Bi-,bi-,tri-,Tetra-和Penta-layer石墨烯/Linbo3结构的X射线衍射模式,具有2个?在5°至85°之间。(b)单,Bi-,bi-,tri-,Tetra-和Penta-Layer石墨烯/Linbo3结构的X射线衍射模式的放大视图,具有2个?在5°至55°之间。(c)BI-,TRI-,TETRA-和PENTA-LAYER的衍射强度与2?在20°至30°之间。

((A)单,BI-,TRI-,TETRA-和PENTA-LAYER石墨烯/Linbo的X射线衍射图32θ之间的结构在5°至85°之间。((b)单,BI-,TRI-,TETRA-和PENTA-LAYER石墨烯/linbo的X射线衍射图的放大视图32θ之间的结构在5°至55°之间。((C)Differences between the diffraction intensities of bi-, tri-, tetra-, and penta-layers and those of mono-layer sample with 2θ between 20° and 30°. Image Credit: Sun, Y et al., Scientific Reports

In the present study, the researchers explored the thermodynamic properties of deformed few-layer graphene by examining the propagation frequencies, velocities, and attenuation characteristics of SAWs that went through the graphene layers.

方法

At ambient temperature and under atmospheric conditions, graphene layers were transferred layer by layer onto the surfaces of LiNbO3Crystals. The graphene layers were slacked in an incommensurate manner additionally and attempts were made so that there is no crystallographic correlation between them is developed.

Y型Linbo表面上的跨跨换能器(IDT)电极3晶体(128度,尺寸为10x30x0.5毫米3)用于生产和接收锯。SAW设备的基本频率为50 MHz。在室温下,将带有单,双,三,四和五角形的石墨烯膜沉积在锯设备的表面上。

此外,石墨烯/林博3将样品放在真空容器中,残留气压小于1.1107 PA,以测量加热和冷却时的性能。遵循锯观测,在林博上的石墨烯片3使用X射线衍射和拉曼散射研究晶体。

The percentages of the FWHM of the G band in the wavenumber range of 1577.00 cm-1 to 1590.77 cm-1.

g频带的FWHM的百分比在1577.00厘米的波数范围内-1至1590.77厘米-1。图片来源:Sun,Y等人,科学报告

结果

X射线衍射测量结果表明,四层和五角形的间距接近石墨。三格烯层的间距比石墨稍微突出,并且双层可能比三层层更重要。因此,结果表明,随着层数的增加,几层石墨烯间距会减小。

X-ray diffraction measurements show that the physically adsorbed gas and residual oxidizing agent molecules can be desorbed effectively (room temperature under vacuum conditions), and that the arbitrarily stacked graphene layers on the LiNbO3晶体具有间距特征。

声子不泄漏到相邻石墨烯层的应变条件称为层内晶格变形。通过观察不层石墨烯基底平面中的拉曼散射峰值移动来研究应变条件。研究结果表明,单晶层几乎是完美的,但是随着层的数量的增加,晶体缺陷和变形被引入堆叠膜中。此外,G带波数对石墨烯晶格变形敏感,即使仅一个单个石墨烯层可用,也可以以强信号噪声比观察。

声子可以泄漏到相邻的石墨烯层中的应变条件称为层间晶格变形。单,三和五层样品在层与底物之间显示出很大的相互作用,而双层和四层样品在层与底物之间表现出适度的接触。

通过测量锯的传播速度(穿过石墨烯/林博),研究了层间晶格变形3界面)表明,在三层和五角层样品中发生了较大的层间相互作用(晶格变形)。还可以证实,层间晶格变形使声子泄漏到相邻的石墨烯层中,Young的模量随层数而变化。

还证实了层间晶格变形在几层石墨烯中,奇数层造成石墨烯/linbo的粘性摩擦3随着层数的增长,界面和TEC从负向正变为正。

G频带的波数的百分比用于单,BI-,TRI-,TETRA-和PENTA-LAYER石墨烯/LINBO3结构1575.0 cm-1和1595.0 cm-1之间。

Percentage of the wavenumber of the G band for mono-, bi-, tri-, tetra-, and penta-layer graphene/LiNbO31575.0厘米之间的结构-1And 1595.0 cm-1。图片来源:Sun,Y等人,科学报告

结论

Mono-, bi-, tri-, tetra-, and penta-layer graphene samples were prepared in the study by transferring individual graphene layers on the LiNbO3晶体表面。所有样品均显示层间晶格失真,并在石墨烯/linbo3接触层的温度堆叠层的温度附近,通过层间晶格变形诱导棒状摩擦。随着层数的增加,受损的几层石墨烯的热膨胀系数从正变为负。

Source

Sun,Y.,Kirimoto,K.,Takase,T。等。可能的成对 - 石碳结构控制任意堆叠的几层石墨烯的热力学特性。Sci代表11,,23401(2021)。

https://www.nature.com/articles/s41598-021-02995-5

免责声明:此处表达的观点是以其私人身份表达的作者的观点,不一定代表AZOM.com的观点有限的T/A Azonetwork本网站的所有者和运营商。此免责声明构成了条款和条件使用此网站。

Chinmay Saraf

写的

Chinmay Saraf

Chinmay Sarafis a science writer based in Indore, India. His academic background is in mechanical engineering, and he has extensive experience in fused deposition-based additive manufacturing. His research focuses on post-processing methods for fused deposition modeling to improve mechanical and electrical properties of 3D printed parts. He has also worked on composite 3D printing, bioprinting, and food printing technologies. Chinmay holds an M.Tech. in computer-aided design and computer-aided manufacturing and is passionate about 3D printing, new product development, material science, and sustainability. He also has a keen interest in "Frugal Designs" to improve the existing engineering systems.

Citations

请使用以下格式之一在您的论文,论文或报告中引用本文:

  • APA

    萨拉夫(Saraf),chinmay。((2021, December 15). Thermodynamics of Stacked Graphene Influenced by Pair-Graphene Structures. AZoM. Retrieved on May 22, 2022 from //www.wireless-io.com/news.aspx?newsID=57692.

  • MLA

    萨拉夫(Saraf),chinmay。“受配对结构影响的堆叠石墨烯的热力学”。AZoM。2022年5月22日。

  • Chicago

    萨拉夫(Saraf),chinmay。“受配对结构影响的堆叠石墨烯的热力学”。Azom。//www.wireless-io.com/news.aspx?newsid=57692。(2022年5月22日访问)。

  • 哈佛大学

    萨拉夫(Saraf),chinmay。2021.Thermodynamics of Stacked Graphene Influenced by Pair-Graphene Structures。Azom,2022年5月22日,https://www.wireless-io.com/news.aspx?newsid=57692。

告诉我们你的想法

您是否有评论,更新或想添加到此新闻故事中的任何内容?

留下您的反馈
您的评论类型
提交