经过Surbhi Jain2022年4月18日Reviewed by Susha Cheriyedath, M.Sc.
在最近发表在《开放式杂志》上的评论中聚合物,研究人员讨论了用于在神经修复中应用的聚合物水凝胶载体的设计和开发。
研究:用于神经修复的聚合物水凝胶载体的设计和制造。图片来源:sciepro/shutterstock.com
背景
在诊所中,神经修复仍然是一项复杂的任务。最近,许多研究集中在生物材料(如水凝胶)对神经愈合的重大影响。欧洲杯足球竞彩水凝胶用于各种神经系统,包括中枢神经系统(CNS)和周围神经系统(PNS),但它们在中风后修补脑神经尤其有益。
近年来,中风率急剧上升。在中风治疗的亚急性和慢性阶段中,促进神经愈合和功能恢复的康复疗法至关重要。尽管已经发现某些技术在动物模型中有效,但仍然存在重大问题。
结果,对于亚急性和慢性阶段的中风治疗,可以有效地运输治疗化学物质并维持其在大脑部位的长期保留率的生物相容性载体系统是非常可取的。水凝胶是用于各种生物医学目的的良好载体系统。
在许多研究中,水凝胶载体对中风诱导的脑损伤具有强大的恢复活性。结果,需要进行全面的摘要,以为研究人员提供有用的见解和技术知识,以设计和开发水凝胶载体,以在神经修复中获得显着的治疗作用。
关于研究
在这项研究中,作者讨论了水凝胶的结构和分类,以及可用于创建具有精确化学和物理特性的水凝胶载体的生产和加工技术。深入研究了水凝胶的物理和化学特性的操纵,以实现更好的治疗影响并刺激神经愈合。讨论了使用水凝胶微球载体进行中风治疗的未来前景。
研究人员描述并强调了各种水凝胶系统用于中风康复中的效用的合成,设计和应用,以及其他用于脊髓和PNS修复中应用的水凝胶系统。总结了用于神经愈合的水凝胶系统的分类,负载能力和制造。为了更好地满足对神经恢复的需求,讨论了修改水凝胶系统物理特征的方法。
The team explained how hydrogels are classified based on their sources. The following will provide a quick overview of some natural-based biomaterials that are employed in nerve healing.
观察
Leipzig discovered that neural development occurred best on the softest surfaces, where the hydrogel's elastic modulus was less than 1 kPa. Neural stem cells differentiated into neurons best when the matrix elastic modulus was 500 Pa. Typical brain tissue had an elastic modulus of 0.1 to 1 kPa. The peripheral nerve's elastic modulus was around 570 kPa. The spinal cord's elastic modulus ranged from 1 to 1.4 MPa. Schwann cells cultivated in printed structures had a vitality of 92.34 ± 2.19% after 14 days of culture and had a higher ability to release NGF (142.41 ± 8.99 pg/mL) than cells cultured in two-dimensional cultures (92.27 ± 9.30 pg/mL).
Image Credit: Various hydrogel carriers for nerve repair. (a) Injectable hydrogel carriers for brain nerve repair (central nervous system); (b) Hydrogel carriers as conduits for peripheral nerve repair (peripheral nervous system); (c) Hydrogel carriers as adhesive for spinal cord repair (central nervous system). Image Credit: Ma, X. et al., Polymers
当环境的pH值增加到7.4时,凝胶溶液在3分钟内开始迅速凝胶。水凝胶具有80%的孔隙率和良好的肿胀行为。可注射的水凝胶可以填充任何3D形状的脑缺陷,并运输足够的治疗物质来缺陷。发现TREG能够控制脑病变中的局部免疫反应并促进现场神经元再生。
Modifying the physical properties of the hydrogel carrier was found to be an effective and promising strategy for improving the nerve repairing ability of the hydrogel carrier. Furthermore, while hydrogel-based therapy in rodent models had shown promise, additional research into neuroplasticity, such as synaptic plasticity, axonal outgrowth, neural networks and circuits, and dendritic spine density, was needed to fully comprehend the nerve healing process.
结论
In conclusion, this study elucidated that hydrogel-based therapy has made major advancements in nerve healing. The high biosafety of diverse hydrogels produced from natural and synthetic sources means that they can be employed as nerve repair carriers.
It was observed that because therapeutic chemicals have a large loading capacity, hydrogels could be used in all neural systems, including the brain, peripheral nerves, and spinal cord. Furthermore, several medications could be loaded and spatiotemporal sequential release modulated in a single carrier, which resulted in a significantly more potent therapeutic impact. The hydrogel's shape variation, arising from varied fabrication and processing procedures, can adapt to various nerve restoration conditions.
作者认为,Tregs治疗与注射水凝胶微球相结合可能会导致未来成功的中风康复。他们还提到,除了惰性载体外,诸如模量和电导率之类的水凝胶物理特征在神经愈合中起着至关重要的作用。他们还强调,将来应该将更多的重点用于大脑神经修复。
Source
MA,X.,Wang,M.,Ran,Y。等。用于神经修复的聚合物水凝胶载体的设计和制造。聚合物14(8)1549(2022)。
https://www.mdpi.com/2073-4360/14/8/1549
免责声明:此处表达的观点是以其私人身份表达的作者的观点,不一定代表AZOM.com的观点有限的T/A Azonetwork本网站的所有者和运营商。此免责声明构成了条款和条件使用此网站。