强大的方法分析了飞秒量表的复杂过程

过去,很难理解当离子穿透物质时发生的高度复杂的过程,因为它们发生得如此之快。但是,现代测量使它成为可能。

TU Wien authors of the study from left to right: Friedrich Aumayr, Anna Niggas, and Richard Wilhelm. Image Credit: Vienna University of Technology.In the past, it has been difficult to understand the highly complicated processes that occur when ions penetrate a substance because they happen so quickly. However, modern measurements have made it possible.

How do various substances respond to the action of ions? This is a crucial question in many scientific fields, such as nuclear fusion, where the walls of the fusion reactor are bombarded with high-energy ions, as well as semiconductor technology, where semiconductors are subjected to ion beam bombardment to create intricate architectures.

Retrospective analysis of an ion impact’s effects on a substance is simple. However, it can be challenging to comprehend the temporal order of such operations. The effects of ion penetrating materials such as graphene or molybdenum disulfide on the individual particles have now been studied on a time scale of one femtosecond by a research team atTU Wien

在整个过程中彻底检查释放的电子至关重要:从某种意义上说,当测量被用来重建操作的时间序列时,测量会变成“电子慢动作”。Physical Review Letters最近发表了这些发现,甚至被选为“编辑的建议”。

Twenty to Forty Times Charged Particles

Highly charged ions are used by the research team of Professor Richard Wilhelm at the TU Wien Institute of Applied Physics. Xenon atoms have 54 electrons in their neutral state. They are stripped of 20 to 40 electrons and the remaining significantly positively charged xenon ions are then focused onto a tiny layer of material from xenon atoms.

我们对这些离子与仅由单层碳原子组成的材料石墨烯的相互作用特别感兴趣。这是因为我们已经从以前的实验中知道石墨烯具有非常有趣的属性。石墨烯中的电子传输非常快

维也纳技术大学的第一作者安娜·尼加斯(Anna Niggas)

由于颗粒反应如此之快,因此不可能直接监视过程。欧洲杯猜球平台但是,可以应用一些独特的技术。

在这样的过程中,通常也会释放大量电子。我们能够非常精确地衡量这些电子的数量和能量,将结果与基尔大学的合着者贡献的理论计算进行比较,这使我们能够揭示在飞秒尺度上发生的情况

维也纳技术大学的第一作者安娜·尼加斯(Anna Niggas)

飞秒穿越石墨烯的旅程

强烈带电荷的离子首先向物质的薄层移动。由于其正电荷,它创建了一个影响材料电子的电场,使它们甚至在接触之前就可以朝着冲击部位的方向行驶。

该材料的电子最终被材料的强电场撕开,并被带负电的离子捕获。然后,离子立即撞击材料的表面并将其刺穿。这导致了复杂的相互作用,其中释放电子,并通过离子迅速将大量能量转移到该物质上。

如果不存在电子,则材料中仍存在正电荷。但是,从其他材料零件移入的电子迅速弥补了这一点。该过程在石墨烯中很快发生,导致了强大的原子尺度电流的简短形成。在二硫化钼中,此过程移动得更慢。

但是,在这两种情况下,材料中电子的分布都会影响已经释放的电子。结果,如果对这些发射的电子受到密切监控,它们可以揭示有关影响时间结构的信息。只有快速移动电子才能逃脱物质。较慢的电子反向,再次被困,不进入电子检测器。

The ion can pass through a layer of graphene in just one femtosecond. Ultrashort laser pulses have been used to measure processes on such short time scales, but in this situation, they would deposit a lot of energy in the material and fundamentally alter the process.

通过我们的方法,我们找到了一种方法,可以提供相当基本的新见解。结果有助于我们了解物质对非常短而非常强烈的辐射暴露的反应 - 不仅对离子,但最终也对电子或光

维也纳技术大学FWF开始项目负责人理查德·威廉(Richard Wilhelm)

The “Innovative Projects” program, the TU-D doctoral college at TU Wien, and the FWF, provided funding for the research.

期刊参考:

Niggas, A.,et al。((2022) Ion-Induced Surface Charge Dynamics in Freestanding Monolayers of Graphene and MoS2通过电子的发射探测。Physical Review Lettersdoi.org/10.1103/PhysRevLett.129.086802

Source:https://www.tuwien.at/en/

Tell Us What You Think

Do you have a review, update or anything you would like to add to this news story?

留下您的反馈
Your comment type
Submit