发表在|消息|Energy|光伏

套件和合作伙伴启动Solar Park 2.0项目,以优化大型光伏植物

Shade, dirt, or aging considerably reduce the yield of large photovoltaic facilities. Karlsruhe Institute of Technology (KIT) and partners from science and industry have now launched the Solar Park 2.0 project to reduce these losses. Innovative circuits, novel power electronics, and AI-supported optimization are expected to increase the yield and service life of facilities and to reduce their operation costs. The Federal Ministry for Economic Affairs and Climate Action (BMWK) funds the just started project with around EUR 2.5 million.

To achieve climate neutrality, use of renewable energy sources must be increased massively. "大型太阳能公园在这方面非常重要,”妮娜·蒙兹克(Nina Munzke)说。KIT电气工程学院(ETI)的研究人员在Kit的电池技术中心启动了Solar Park 2.0项目. "However, it is a problem to find larger areas for such facilities in the densely populated regions of the world. To nevertheless reach our climate goals, available areas must be used far more efficiently.“在太阳能公园2.0项目中,研究人员为此开发了电子组件和方法。”我们希望在不利的条件下(例如阴影,污垢或衰老)增加光伏设施的功率输出,并优化效率和功率收益率,芒兹克说。

新型电力电子设备增加产量

要使用具有最大效率的光伏模块,它必须接近其最大功率点(MPP)。“模块的输出是由电流乘以电压水平的。在MPP时,输出最高,这意味着达到了最大可能的产率,”卢卡斯·史蒂芬斯基(Lukas Stefanski)说。但是,MPP随温度,太阳的位置和其他因素而变化。因此,最佳操作需要连续调整电压。专门的功率优化器用于此目的。尽管如此,传统电路中的最大功率跟踪(MPPT)主要发生在中央逆变器中。“当几个光伏模块以串联或字符串连接时,单个模块的平行连接,阴影和故障降低了整个设施产生的功率,”Stefanski says.“控制单个模块并根据特定电路优化施加到字符串的电压更为有利。”

为此,Solar Park 2.0项目应用了套件专利的HILEM(高效低努力MPPT)电路。该电路替换了通常应用于字符串并行连接的组合框,并在字符串级别上启用有效的MPPT。HILEM电路与Karlsruhe应用科学大学以及BRC和PREMA公司共同开发的新型功率优化器的结合,然后允许在字符串和模块级别上同时进行MPPT。欧洲杯线上买球"This does not only increase the yield of the photovoltaic facility, but also the service life. At the same time, operation costs are reduced," Stefanski says.

Planned Test Facility on Campus North

The new optimization components are planned to be evaluated in two photovoltaic test facilities of 30 kilowatt-peak (kWp) each. One plant will be used to run test scenarios for the new power optimizers. The second plant will serve as a reference. Both plants will be set up next to each other on a free area of the existing solar park of KIT's Energy Lab 2.0. Work will also be aimed at developing an AI-supported method to predict power production of photovoltaic facilities based on operation data. This method will then be used to identify possibly shaded, damaged, or dirty modules."This will help us find out at which point of solar parks installation of power optimizers would be worthwhile,"ETI的Markus Becker说。AI经过了现有的能源实验室2.0太阳能公园的长期数据,以及由斯图加特大学光伏研究所(IPV)开发的无线监控系统(WSN)收集的数据。

来源:https://www.kit.edu/english/

Tell Us What You Think

您是否有评论,更新或想添加到此新闻故事中的任何内容?

Leave your feedback
您的评论类型
Submit