Physicists Observe Mechanism That Allows Semiconductors to Function as Novel Electronic Materials

Physicists at theUniversity of California, San Diego首次观察到“激子”内的相干性生产,这是电子和孔的结合对,使半导体能够充当新的电子设备。

Scientists working in the emerging field of nanotechnology, which is finding commercial applications for ultra-small material objects, believe that this newly discovered property could eventually help the development of novel computing devices and provide them with new insights into the quirky quantum properties of matter.

Details of the new finding appear in a paper published in the November 3 issue of the journal Physical Review Letters by a team of four physicists at UCSD working in collaboration with a materials scientist at UC Santa Barbara.

The effort was headed by Leonid Butov, a professor of physics at UCSD who in 2002 led a similar team at the Lawrence Berkeley National Laboratory to the discovery that excitons, when made sufficiently cold, tend to self-organize into an ordered array of microscopic droplets, like a miniature pearl necklace (shown in figure).

“什么是连贯性,为什么如此重要?”布托夫说。“首先,现代物理学是由于自然界中所有颗粒都属于波浪而诞生的。欧洲杯猜球平台连贯性意味着这样的波是“同步的”。物质波的自发连贯性是自然界中一些最令人兴奋的现象的原因,例如超导性和激光。”

UCSD物理学助理教授,论文的合着者迈克尔·福格勒(Michael Fogler)补充说:“一种可视化连贯性的简单方法是想象一下体育场上的观众欢呼。”“如果顶部的排与底部的行同时上下,则行是相互连贯的。反过来,当观众自己的主动行动进行欢呼时,连贯性是自发的,并且没有由外部播音员的指示来精心策划。”

物质波的自发连贯性的一个著名例子是Bose-Einstein冷凝物,这是大约80年前爱因斯坦预测的国家。这种新形式的物质最终是由科罗拉多大学物理学家于1995年创建的,并被认为是如此值得注意的科学家获得了2001年诺贝尔物理学奖。Bose-Einstein冷凝物是原子的气体如此致密和寒冷,以至于它们的物质波失去了个性,并将其凝结成“宏观相干的超级原子波”。

原子玻色网凝结发生在绝对零附近的温度下。但是,预计激子在高度高度(尽管公认的公共尺度仍然很低,比室温低约倍)时表现出相同的现象。值得注意的是,这是Butov和他的团队观察到激子连贯性的一系列温度。

“Excitons are particles that can be created in semiconductors, in our case, gallium arsenide, the material used to make transistors in cell phones,” said Fogler. “One can make excitons, or excite them, by shining light on a semiconductor. The light kicks electrons out of the atomic orbitals they normally occupy inside of the material. And this creates a negatively charged ‘free’ electron and a positively charged ‘hole.’”

电吸引力使这两个物体保持在一起,例如电子和质子在氢原子中。它还使激子可以作为单个粒子而不是非相互作用的电子和孔存在。但是,这可能是激子灭亡的原因。由于电子和孔保持在近距离状态,因此有时它们会在光线闪烁中互相消灭,类似于物质和反物质的an灭。

To suppress this annihilation, Butov and his team separate electrons and their holes in different nano-sized structures called quantum wells.

“Excitons in such nano-structures can live a thousand or even a million times longer than in a regular bulk semiconductor,” said Butov. “These long-lived excitons can be prepared in large numbers and form a high density exciton gas. But whether excitons can cool down to low temperatures before they recombine and disappear has been a key question for scientists.”

Butov补充说:“我们发现的是激烈气体中自发连贯性的出现。”“这是由连贯性长度的行为所证明的,我们能够从激子重新结合时从光图案中提取(如图所示)。低于绝对零以上的大约5度开尔文的温度,相干长度明确解决,并随着温度降低而显示稳定和快速的生长。这与“珍珠项链”的珠子的形成一致。相干长度在实验中最冷的点达到了约两个微米。”

研究小组的其他成员是UCSD学生Sen Yang和Aaron Hammack和Arthur Gossard,UC Santa Barbara的材料科学系教授。欧洲杯足球竞彩欧洲杯线上买球该研究项目得到了国家科学基金会,美国陆军研究办公室和Hellman Fund的资助。欧洲杯线上买球

告诉我们你的想法

您是否有评论,更新或想添加到此新闻故事中的任何内容?

Leave your feedback
您的评论类型
提交